
Effect of a Core Conditioning Program on Lumbar Paraspinal Muscle Area, Asymmetry and Pain Score

in Military Working Dogs with Lumbosacral Pain

Andrea Henderson, DVM, MS, CCRT/P Chief of Rehabilitation DOD Military Working Dog Veterinary Services

DLSS: Anatomy

- Cranial origin of cauda equina varies with dog size
- Nerve roots bordered by:
 - Dorsal laminae and ligamentum flavum (interarcuate ligament)
 - Dorsolateral articular processes and joint capsules
 - Lateral pedicles
 - Ventral L7 and S1 vertebral bodies, dorsal longitudinal ligament and L7-S1 dorsal annulus fibrosus
- Proliferation, swelling or neoplasia of a number of these structures may lead to compression of the nerve root

DLSS: Pathophysiology

- Degenerative conditions:
- Vicious cycle?

DLSS: Clinical Signs

- Pain
 - Many manifestations
 - Pain with examination: pressure on L7-S1 percutaneously or per rectum; dorsal hyperextension of the tail base; lordosis with hips in flexion
 - Pelvic limb nerve root signature/lameness
- Loss of function
 - Atrophy of pelvic limb +/- paraspinal musculature
 - Difficulty with sit/down or rising from these positions
 - Neurologic deficits absent to severe
 - Urinary/fecal incontinence
- Military working dogs:
 - Failure to "hup" during search
 - Reluctance to jump into or out of vehicles
 - Hesitation on jumps, A-frame and
 - other obstacles

DLSS: Diagnosis

- Physical examination and evaluation for pain, lameness, loss of function
 - Adequate objective outcome measures for LS pain?

• Diagnostic Imaging

- CT, MRI does not always correlate with clinical signs or outcome
 - Jones & Inzana 2000, Jones et al. 2000
 - Humans with chronic low back pain
 - Beattie et al. 2000
 - Takatalo et al. 2011

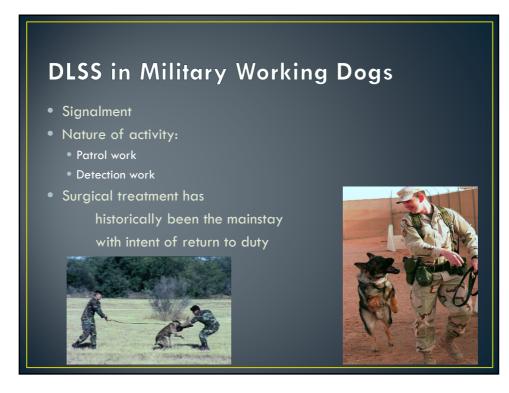
DLSS: Treatment

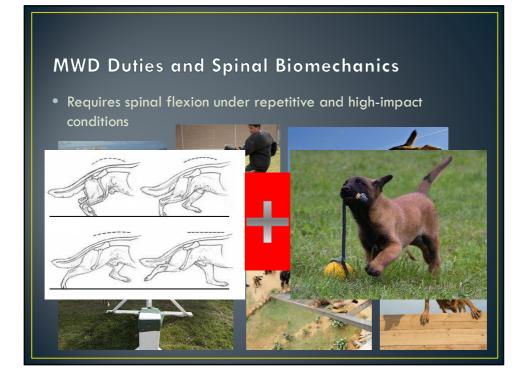
- Medical management
 - Recommended for first-time incidence, mild pain without neurologic deficits and dogs that are not highly active
 - Historically consists of rest and analgesic/anti-inflammatory Rx

Surgical management

- Decompression most often dorsal laminectomy/discectomy
- Distraction and fusion may be elected to break the cycle of instability, tissue proliferation and compression
- Controversial as to whether to distract/fuse

• To cut or not to cut?

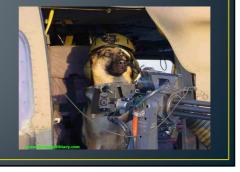

DLSS: Outcomes after Medical


Treatment

- Medical treatment previously defined as 2-4 weeks of cage rest and oral medications such as analgesics, antiinflammatories
- Often recommended for dogs at first episode, or non-working dogs with intermittent episodes of LS pain only (Worth et al. 2009)
- Historically, approximately 50% of dogs reported to have improvement or resolution of clinical signs with medical management (Ness et al. 1994)
- Reoccurrence is common
- Moderate-severe LS pain and/or neurological deficits considered indicators of surgery

DLSS: Post-Operative Outcomes

- More favorable in pets than in MWDs
- Chambers et al, 1988 77% dogs had good to excellent results at 14 months post op DL and discectomy
- Oliver et al, 1978 73% dogs had good to excellent results at 21 months post op DL and discectomy
- Danielsson et al 1999 79% return to normal function, 93% improvement (median follow-up 26 months), reoccurrence in 18%
- Suwankong et al 2008 79% showed clinical improvement and 76% of those available for follow-up continued to show improvement at 5 years post-op



DLSS in Military Working Dogs

- Variable prognosis for military working dog return to duty after lumbosacral surgery of any type (41% returned to normal function – Linn et al 2004)
- Prognosis for return to normal function worsened with age and disease severity
- Canine lumbosacral disease physical exam findings do not always correlate with advanced imaging (severity)

Is surgery always indicated?

Lumbosacral Pain, Epaxial Musculature and Conditioning

- Humans with chronic low back pain (CLBP) have been assessed to have:
 spinal instability (postulated association with intervertebral disc degeneration)
 - reduced paraspinal muscular CSA, strength and control
 - Lumbar multifidus has been the most consistently affected
 - Muscles with reduced CSA in CLBP per CT evaluation: lumbar multifidus, longissimus group, psoas major and quadratus lumborum
 - pathological paraspinal muscle activation (Gibbons et al. 1997, Kamaz et al. 2007, Parkkola et al.1992, Danneels et al. 2000, Kader et al. 2000, and many others)
- Clinical Signs often not correlated with specific advanced imaging abnormalities, → non-surgical treatment approaches

(Beattie et al. 2000, Takatalo et al. 2011)

Lumbosacral Pain, Epaxial Musculature and Conditioning

- Dogs with lumbosacral pain may also demonstrate atrophy of similar paraspinal muscle groups – results of two pilot studies:
 - Paraspinal muscle cross-sectional area (CSA):vertebral ratio and density (for region of interest) measured via Computed Tomography
 - Dogs with clinical signs of LS pain vs. dogs without
 - Francis et al. 2012 (Published Abstract) Labrador Retrievers
 - Lower CSA in multifidus lumborum, quadratus lumborum and iliopsoas in dogs with LS pain (but not longissimus)
 - CT densities varied
 - Cain et al. 2013 (Published Abstract) Belgian Malinois
 - Lower CSA in multifidus lumborum, longissimus lumborum, iliopsoas and sacrocaudalis dorsalis (but not quadratus) in working Malinois with LS pain

Lumbosacral Pain, Epaxial Musculature and Conditioning

- Conservative management (e.g., core stabilization exercise) → evidence of improved pain and function in people, including athletes, with CLBP (Hides et al. 2008, Marshall et al. 2006)
- Biomechanical differences, but possibly similar results in dogs with lumbosacral pain?

Epaxial Musculature in Dogs and Horses

- Canine Pilot Study (Teeling et al, 2012):
 - Three healthy Labrador Retrievers exercised three times per week for 8 weeks by standing on a peanut physioroll.
 - Lumbar epaxial cross-sectional area measured before and after the exercise program using diagnostic ultrasound
 - Lumbar epaxial CSA increased for all three dogs, n too small for statistical significance and no controls used
- Stubbs et al, 2011:
 - Healthy Horses (n=8) exhibited statistically significant multifidus muscle CSA increase from baseline (T10-L5) after a 12-week dynamic mobilization program using cervical flexion series
 - Exercises: 5 reps of each, 5 days per week
 - Muscle CSA was measured using diagnostic ultrasound

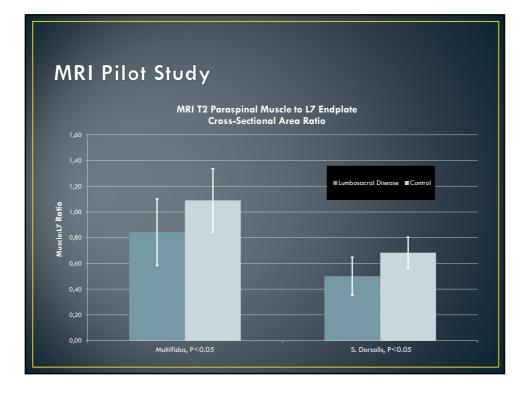
Objectives

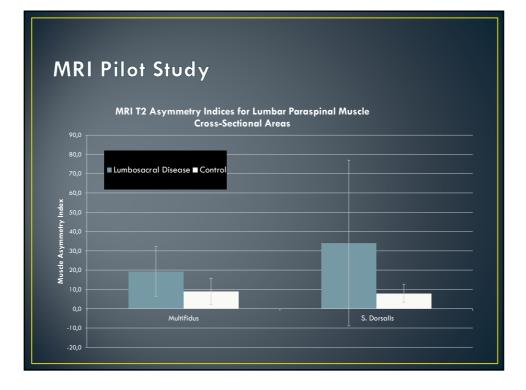
1. To determine whether evidence exists of lumbar paraspinal muscle atrophy in dogs with lumbosacral pain

2. To determine whether an 8-week core

conditioning program will, in dogs with LS pain:

- a. Increase muscle CSA, symmetry and density
- b. Improve pain and function


Hypothesis: Dogs with lumbosacral pain will have reduced muscle crosssectional area, asymmetry and density when compared to control dogs without pain. A core conditioning program for dogs with lumbosacral pain will yield improved epaxial muscle CSA, symmetry and density, as well as reduced pain and increased function

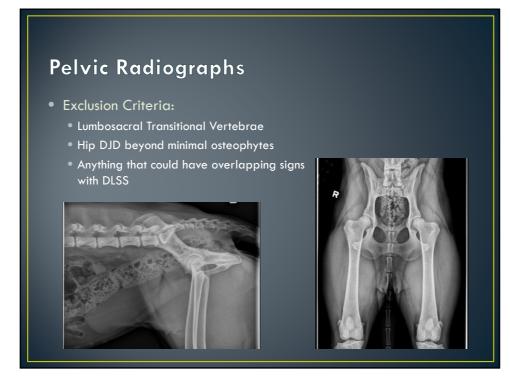


MRI Pilot Study

- 9 Dogs diagnosed with DLSS
- 9 Control Dogs
 - LS MRI added for patients receiving MRI for reasons unexpected to cause lumbar paraspinal atrophy
- MRI T2 sequence transverse images at L7 endplate
- Measured cross-sectional area of sacrocaudalis dorsalis, multifidus, iliopsoas and L7 body
- IPS not used variability perceived due to positioning
- Determined mean cross-sectional area (left and right) and an asymmetry index for each muscle pair

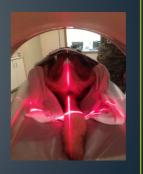
Military Working Dog Study

- Records of all MWDs used as search/detection training aids
- Inclusion Criteria:
 - Age: 5-11 years
 - Breed: German Shepherd Dog, Belgian Malinois, Dutch shepherd
 - Normal orthopedic and neurological exam (excl. LS pain in cases)
 - Suitable temperament
 - No anti-inflammatory/analgesic medications, supplements or diets for previous 8 weeks.
 - 13 control dogs
 - 11 dogs with LS pain



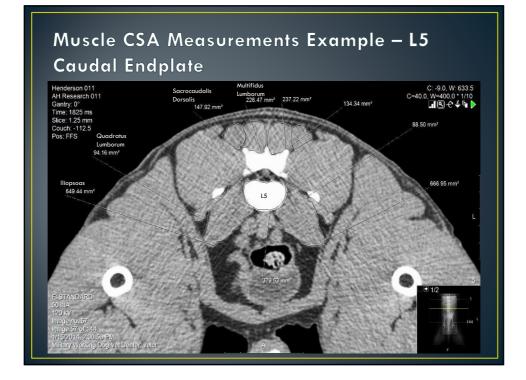
Pressure Algometer over L7-S1 Goniometry of Tail Elevation Angle

<section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><code-block></code>


13

CT Acquisition Protocol

- 64-Slice Volume Scanner
- 120 k∨, 50mA
- 1.25mm slices
- Twice, varied position:
 - 145° Hip Extension
 - 50° Hip Flexion
 - Margin of Error +/- 2.5°
- Density calibration phantom included


Muscle Measurements

- Muscles:
 - Multifidus lumborum
 - Sacrocaudalis dorsalis (longissimus group)
 - Quadratus lumborum
 - Iliopsoas
 - Gluteus medius
- Muscle:Vertebral CSA Ratio
 L5, L6 or L7 depending on slice
- Muscle Asymmetry Index

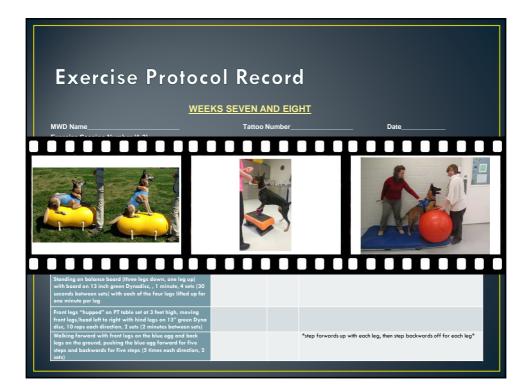
 $\begin{array}{l} Ratio = \frac{right\ multifidus\ CSA}{teft\ multifidus\ CSA}\\ If\ ratio \ge 1, Symmetry\ \% = (ratio - 1) \times 100\\ If\ ratio < 1, Symmetry\ \% = -\left(\left(\frac{1}{vartic}\right) - 1\right) \times 100 \end{array}$

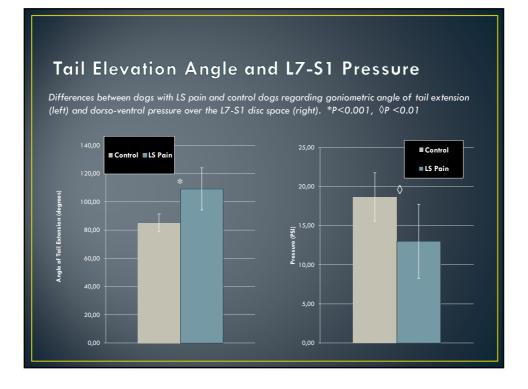
• Muscle Density (Hounsfield Units)

Agreement Tests

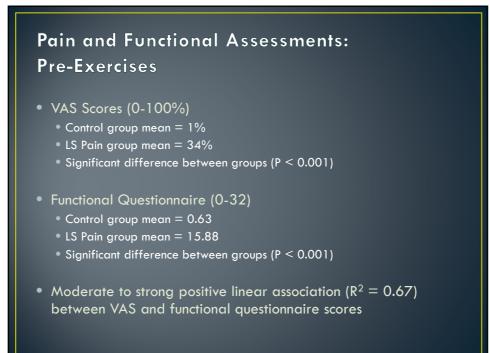
- Intra-observer and inter-observer agreement
 - Board-certified radiologist and resident measuring from CT images
 - Compared for agreement of continuous measurements using Concordance Correlation Coefficient (Lin, 1989)
 - Randomly sampled 10 measurements for all comparisons
- Clinical and Imaging Agreement
 - Comparison of dogs categorized as LS or control by objective clinical findings to CT imaging-based diagnosis of DLSS by blinded radiologist

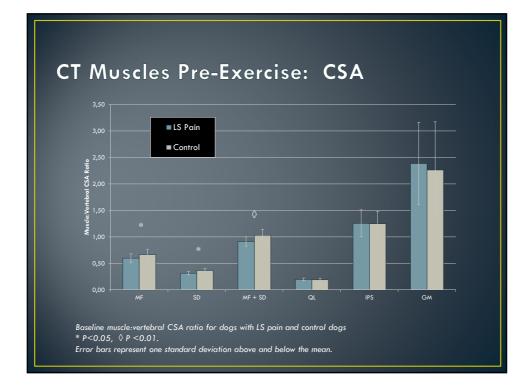
Exercise Protocol

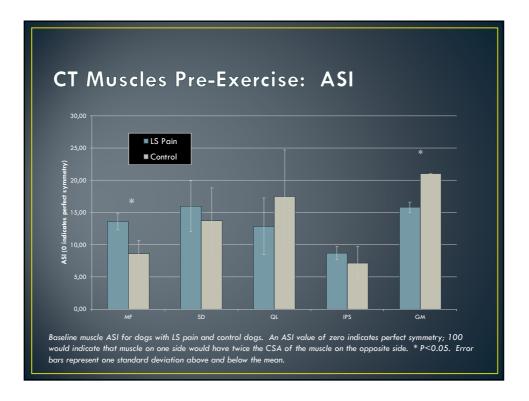

- Four dogs in the LS pain group completed
- 8 weeks, three sessions per week, 45-50 min/session
- Modeled after frequency and duration from Kim et al. 2011

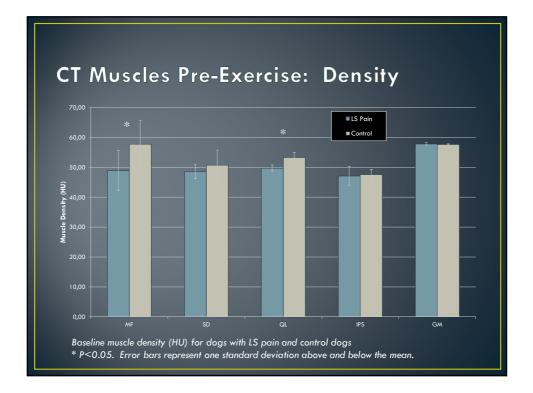

Exercise Protocol

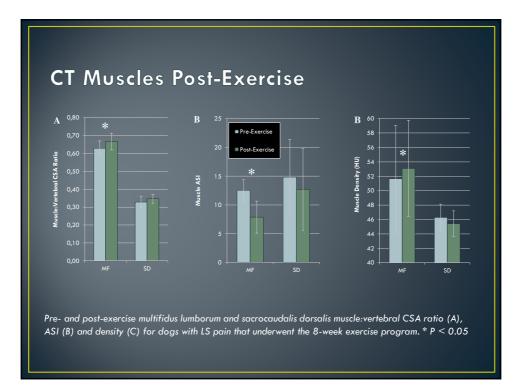
- Weeks 1 and 2: Isometric and light conditioning
- Weeks 3 and 4: Increase strength/endurance at the above level
- Weeks 5 and 6: Controlled concentric and eccentric exercises, dynamic mobilization and moderate conditioning
- Weeks 7 and 8: Increase strength/endurance at the level utilized in weeks 5-6

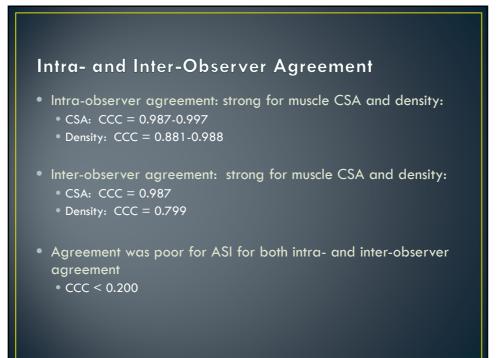







19

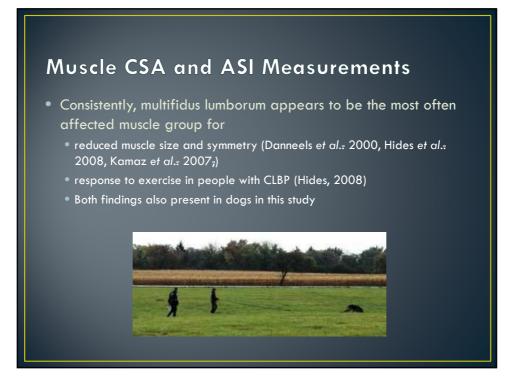



20

Clinical Signs vs. CT

CT evaluation for DLSS by a radiologist of the 16 participating working dogs:

- No DLSS evidence: 2 dogs
- Some evidence suggestive of DLSS (foraminal stenosis, spondylosis): 5 dogs
- DLSS evidence definitively present: 9 dogs
- No association between clinical signs of LS pain and CT findings suggestive or definitive for DLSS


Discussion

- Study demonstrated:
 - Moderately strong correlation between signs of pain (VAS score) and dysfunction (Functional Assessment Questionnaire) in dogs with LS pain
 - Statistically significant improvement in function in LS pain dogs with core exercises; rested dogs did not improve
 - Trend towards (but not significant) improvement in LS pain in both rested and exercised dogs
 - Significantly reduced multifidus cross-sectional area, density and asymmetry index in dogs with LS pain vs. control dogs
 - Significant increase in multifidus muscle cross-sectional area and density in response to an 8-week core conditioning program

Discussion

Clinical Findings of LS Pain vs. CT Image Assessment

- This study supports the historically poor correlation
- Additional factors:
 - Breeds in this study structural characteristics?
 - CT vs. MRI for complete analysis of the lumbosacral region
 - These areas warrant further investigation but it may be that LS pain could be a more reliable evaluation tool for comparing to function and determining response to interventions
 - However, poor correlation between VAS score and function assessment at the post-exercise period
- Findings highlight the need for more reliable objective outcome measures
 - Validation of the functional questionnaire
 - Further assessment of goniometric tail angle and pressure algometry

Muscle CSA and ASI Measurements

- Human response of paraspinal muscles to exercise programs designed to strengthen them – variable.
- Subcategorization of CLBP may help guide management
 - Characteristics of CLBP most likely to respond to exercise regimen: mechanicallyinduced pain and adaptive movement impairments (O'Sullivan, 2005)
 - Other subcategories: pathological source (IVDD) or psychologically/socially driven abnormal movements
 - DLSS: Better identification of mechanisms behind pain and functional deficits may help guide therapeutic intervention
- Other significant changes (increased ASI in control dogs' gluteus medius without corresponding CSA differences)
- ASI reliability questionable given large variation and lack of investigation of disease lateralization
 results should be interpreted with caution

Muscle Density Measurements

- Density in Hounsfield Units (HU) can provide indications of tissue type with CT evaluation
- Muscle has more density (higher number in HU) than fat
- Muscle loss with aging (sarcopenia)
 - Loss mainly Type II fibers replacement with fat and connective tissue
 - Slow neurogenic process
- Human psoas major evaluated via CT at various ages (Imamura et al. 1983)
 - Men and Women from ages 10-39: approx 60-65 HU
 - Men and Women from ages 40+: approx 45-50 HU
- Atrophy associated with CLBP and DLSS?
- If so, results suggest this can be improved for multifidus lumborum with core strengthening exercises.

Limitations:

- Small study population
- Logistics limitations on personnel available to handle and work with the dogs, handler requirement
- Delay between pre-screening and VAS/Functional assessments
- Dogs evaluated were all in lean body condition, impeding good visualization of muscle borders
- MRI more appropriate for soft tissue analysis for DLSS diagnosis and for muscle border identification

Conclusions

- Results of this study indicate that, like people with CLBP, dogs with LS pain demonstrate evidence of atrophy of the lumbar multifidus and longissimus group (sacrocaudalis dorsalis) epaxial muscles.
- Dogs with LS pain can achieve functional improvement for tasks required during detection duties and an increase in area and density of the lumbar multifidus muscles can be achieved with a core conditioning program in dogs with mild to moderate lumbosacral pain without neurological deficits.

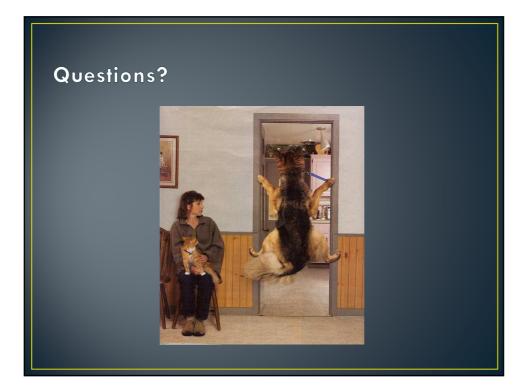
Where do we go from here?

- Prospective, blinded investigation of objective outcome measures for lumbosacral pain:
 - Goniometric tail hyperextension angle
 - Pressure algometry
 - Functional Assessment Questionnaire
- Structural analysis of breeds
 CT characteristics at L7-S1
- Electromyography
 muscle activation patterns
- Variations of exercise program
 - added resistance to optimize
 - effects on LS pain and muscle area
 - Multi-modal non-surgical treatment?
 Prevention strategy with
 - core conditioning?

DLSS: Additional Potential Conservative Treatments

- Epidural corticosteroid injections:
 - Janssens et al, 2009: Retrospective
 - 1 mg/kg methylprednisolone acetate epidurally at L7-S1
 - Injections at t=0, 2 weeks and 6 weeks
 - Dogs were without proprioceptive deficits or HL orthopedic disease (n = 38)
 - Owner follow-up (range, 5-66 months) indicated 79% were improved and 53% were resolved
 - Extracorporeal Shock Wave Therapy
 - No evidence basis in the literature at this time for use with DLSS
 - Anecdotally, may be a component of multimodal pain management
- LASER?
 - Enclosed SC versus post-hemilaminectomy
 - Dog size vs. rat models in nerve regeneration studies

Acknowledgements


My sincere appreciation goes to:

- Dr. Darryl Millis Experimental design development and implementation
- Dr. Silke Hecht Imaging guidance and measurements
- Dr. Jeryl Jones CT and muscle measurement protocols
- Dr. Irfan Asif, and Dr. Marti Drum
- Ann Reed statistical consultation
- DODMWDVS Personnel (Ms. Kelley Meyer, MAJ Sean Majoy, PFC Kristi Deal)

