Canine Performance Sciences

Advancing the Mobile Sensor Technology

Building a Better Detection Dog

COLLEGE OF VETERINARY MEDICINE Paul Waggoner, PhD Co-director CPS waggolp@auburn.edu

- What is the Canine Performance Sciences (CPS)Program
- >Why purpose breeding & raising of detector dogs is needed?
- Structure and function of CPS detector dog production activities
- CPS research & development in detector dog production
- Lessons learned in nearly 20 years of detector dog production

We work nearly exclusively with single-purpose detection dogs

Mission

To innovate detection canine technology by exploring basic and applied research frontiers in olfaction, behavior, cognition, neuroscience, genomics, and physical performance

Functions (what CPS does)

Enhancing U.S. Domestic Production of Detector Dogs

Performance Advancing Detection Canine Technology Sciences

Legacy of Game-changing Innovation

Patents 2015 #8,931,327; 9736,426; 2017 #9763,426 &; 2018 #10123509

Future of Discovery & Emerging Threats

Real-Time Detection of Virus & Bacteria

T. Angle, T. Passler, P. Waggoner, T. Fischer, B. Rogers, P. Galik, & H. Maxwell (2016). *Real-time detection of a virus using detection dogs*. Frontiers in Veterinary Science, vol. 2, 79, pp.1-6. Doi: 10.3389/fvets.2015.00079.

H. Jia, O. Pustovyy, P. Waggoner, R. Beyers, J. Schumacher, C. Wildey, J. Barret, E. Morrison, N. Salibi, T. Denney, V. Vodyanoy and G. Deshpande (2014). *Functional MRI of the olfactory system in conscious dogs*. *PLoS One*, vol. 9, no. 1, p. e86362.

Improvised Device Defeat (IDD) Dog

"The dogs enhanced the Battalion's effectiveness times ten" LtCol J. McGrath, Battalion CMDR

Breeding Program Structure

- >Broader recognition of detector dog as most effective counterterrorism tool available is increasing world-wide demand
- Growing specialization of detector dog applications
 - Military specialties IED; cargo, person-screening, ecological, agricultural etc...
- >Increasing <u>sophistication</u> of detector dog practitioners
- >Higher demand for more capable candidate detector dogs

Supply of dogs exhibiting suitable characteristics to perform contemporary detection tasks has <u>declined</u>

Detector Dog Production Research

Determine evaluative characteristics that are relevant to operational requirements

- Independent but with high trainability
- Air scenting

rmance

- High vigilance/low distractibility in searching for & alerting to targets (obedience to odor)
- Deference for searching vs. social interaction with people
- Environmental soundness in <u>extreme</u> work environments – large event/sporting venues, mass transit, urban clutter
- Specific defining characteristics important to Vapor Wake[®] performance that define the Auburn Dog[™]

Breeding + early development + initial training = outcome

The Auburn Dog™

Auburn Dogs[™] with NYPD Counterterrorism Unit Graduates of VWK9 *Vapor Wake*[®] *Class*

- I. Overview of behavioral assessments; what we've done and what we've learned
- II. Current and future directions in assessing, identifying, and breeding for improved behavior

Behavioral Phenotype

What is the Auburn Dog™ Behavioral Phenotype? Retrospective analysis of CPS behavior evaluations N=157 between 2014-2016 3, 6, 10, 12 mo

frontiers in Veterinar	y Science
	Investigation of the Behavioral Characteristics of Dogs Purpose- Bred and Prepared to Perform <i>Vapor</i> <i>Wake</i> [®] Detection of Person-Borne Explosives
	Lucia Lazarowski ^{1,3} , Pamela Sue Haney', Jeanne Brock', Terry Fischer', Bart Rogers ⁴ , Craig Angle ¹ , Jeffrey S. Katz ² and L. Paul Waggoner'*

Canine Performance Sciences Program, College of Veterinary Medicine, Auburn University, Auburn, AL, United States, Department of Psychology, College of Liberal Arts, Auburn University, Auburn, AL, United States

	Retrieve	
Performance	Hunt	
	Focus	
	Possession	
	Independence	
	Work effort	
	Air scenting	
Environmental Soundness	Surfaces	
	People	
	Clutter	
	Startles	
Trainability	Overall	

Dogs in service
VaporWake[®]
Standard EDD

Defining Behavioral Phenotype

Comparison of individual characteristic scores averaged across time points

TABLE 2 | Mean (standard error) scores for each group by measure, collapsed across time points.

	VWD	EDD	Washout
Performance Retrieve	3.07 (0.05)	3.03 (0.11)	2.84 (0.107)
> Hunt	3.31 (0.06)EDD,W	2.93 (0.12)	2.87 (0.116)
> Focus	3.23 (0.06) ^{EDD,W}	2.84 (0.12)	2.63 (0.121)
	3.03 (0.06)EDD,W	2.62 (0.13)	2.67 (0.125)
> Independence	3.26 (0.06) ^{EDD,W}	2.95 (0.12)	2.79 (0.12)
> Work effort	3.24 (0.06)EDD,W	2.93 (0.115)	2.67 (0.118)
🛇 Air scenting	3.06 (0.07)	2.79 (0.140)	2.99 (0.136)
Environment Surfaces	3.23 (0.05) ^w	3.22 (0.09)	3.01 (0.08)
Reople	3.28 (0.06) ^w	3.16 (0.11)	2.86 (0.10)
S Vehicles	3.27 (0.05) ^w	3.13 (0.11)	2.90 (0.09)
🛇 Visual startle	2.96 (0.10) ^w	2.98 (0.21) ^w	2.17 (0.18)
🛇 Acoustic startle	3.13 (0.09) ^w	2.88 (0.19) ^w	2.06 (0.16)
S Excitability	2.98 (0.04)	2.92 (0.07)	2.93 (0.07)
General> Trainability	3.26 (0.05) ^{EDD,W}	2.82 (0.10)	2.69 (0.10)

^{EDD}Denotes that score was significantly higher than the explosives detection dog (EDD) group at the 0.05 level.

*Denotes that score was significantly higher than the Washout group at the 0.05 level.

Defining Behavioral Phenotype

Distinct behavioral differences between
VaporWake[™], EDD, and Washout dogs

anine

formance

- Performance-related traits differentiated VWD from EDDs, <u>not</u> Environmental Soundness
- Environmental soundness greatest factor for <u>serviceably as a working</u> <u>dog</u>
- Service-quality dogs not necessarily reflect breeding quality
- Enhanced early conditioning/ experience can "boot-strap" (overcome) less than ideal genetics making selecting breeders using traditional characteristics less effective

<u>Need additional</u> <u>analogue quantitative</u> <u>measures</u>

Breeder Behavioral Requirements

Canine

Performance

How to find unicorns?

Building a Better Detector Dog

Disentangling performance & environmental soundness

- Environmental soundness??
- ➢ Reactivity
- > Anxiety
- Excitability positive/negative
- Cognitive/emotional competence
- Theorize that reactivity, anxiety, negative excitability hitched to and being pulled along by high performance selection
- But we know that the "unicorns" do exist
- Low reactivity, controlled excitability, cognitive/emotional competence + very high working performance
- Need new paradigms for assessment with higher resolution of / sensitivity to desired characteristics
- Cognitive-behavioral & neurological metrics to associate with performance and environmental soundness

Takeaways

- Refine definitions/measurement to gain better resolution of important traits
- Early prediction
- Improve environmental soundness
- Genetic vs. environmental

Approaches

I. Improve behavioral assessments

II. Emphasis on early development

ORIGINAL RESEARCH published: 04 October 2018 doi: 10.3389/fvets.2018.00236

Incorporation of cognitive assessments

Cognitive testing N= 81 @ 3, 6, and 11 mo

Canine

ciences

Cognitive Domain	Sub-domain	Test	
	Communication	Gesture following	
Social	communication	Help solicitation	
	Empathy	Emotion contagion	
Physical	Reasoning	Causal cues	
	Spatial navigation	Barrier detour	
	Object permanence	Spatial transpositions	
General		Working memory	
	Executive Functions	Self control	
		Attention	
	Motivation	Persistence	
		Emotion regulation	

Duke University Dog Cognition Test Battery

🔭 frontiers in Veterinary Science

Enhanced Selection of Assistance and Explosive Detection Dogs Using **Cognitive Measures**

School of Anthropology, University of Arizona, Tucson, AZ, United States, 2 Department of Psychology, University of Arizona Tucson, AZ, United States, ³ Evolutionary Anthropology, Duke University, Durham, NC, United States, ⁴ Center for Cognitive Neuroscience, Duke University, Durham, NC, United States

Traditional behavior evaluations

	Retrieve	
Performance	Hunt	
	Focus	
	Possession	
	Independence	
	Work effort	
	Air scenting	
Environmental Soundness	Surfaces	
	People	
	Clutter	
	Startles	
Trainability	Overall	

Evan L. MacLean 1.2* and Brian Hare 3.4

I. Refinement of Behavior Evaluations: Cognitive assessments

Persistence

Behavioral flexibility

Attention/Memory

I. Refinement of Behavior Evaluations: cognitive assessments

1) Relationships between cognitive abilities, behavioral evaluations, and outcome

- Problem-solving speed
- Accuracy success
- Attention
- Cognitive flexibility
- Persistence/motivation
- Social sensitivity*
- Arousal

2) Early indicators of future success

• Evident as early as 3 months

<u>Takeaways</u>

Cognitive domains underlie important detection dog characteristics

- More objective and reliable
- Validate existing measures
 - Complementary

Lazarowski et al. (in Press). Persistence and human-directed behavior in detection dogs: ontogenetic development and relationships to working dog success. *Animal Behaviour*

I. Refinement of Behavior Evaluations: cognitive assessments

The role of arousal in problem solving and performance

Behavior Evaluations, 2.0

Sciences

I. Refinement of Behavior Evaluations

Behavior Evaluations, 2.0

Canine Performance

Sciences

- Adoption of *The Behavior Checklist* (Dr. James Serpell, U Penn) for environmental soundness measures
 - Standardized and validated
 - Can be used for genetic analysis with Estimated Breeding Values (EBVs)

1 - Behavior Checklist (BCL) Scoring System

BCL General Overview

- BCL Form Downloads
- Definitions (Download Page ~ Alt. Languages)
- > 1 Anxious in Unfamiliar Situations
- > 2 Fear of Noises
- > 3 Fear of Novel Objects
- > 4 Fear of Underfootings
- > 5 Fear of Dogs
- > 6 Fear of Stairs
- > 7 Fear of Traffic
- > 8 Separation Anxiety
- > 9 Hyper-Attachment
- > 10 Fear of Strangers
- > 11 Body Handling Concern
- > 12 Retreats when Reached for
- > 13 Harness Sensitivity

Validation with other measures

AUBURN UNIVERSITY COLLEGE OF VETERINARY MEDICINE

The role of Early Life Stress (ELS)

- Chronic or severe ELS can be traumatic
- Mild-moderate ELS:
 - Promotes resilience
 - Enhances problem-solving abilities
 - Self-regulation of arousal
 - "Stress inoculation"

II. Emphasis on Early Development

Enhanced early socialization

- Introduction of "small challenges":
 - Brief separations
 - Individual enhanced socialization
 - Multi-sensory stimulation
- Maternal interactions
 - Population specificity?

Effects of maternal investment, temperament, and cognition on guide dog success

Emily E. Bray^{Ab,1}, Mary D. Sammel⁵, Dorothy L. Cheney^{4,1}, James A. Serpell⁹, and Robert M. Seyfarth^a ¹Department of Psychology, University of Pennyhvania, Philadelphia, PA 19104, ¹School of Anthropology, The University of Arakinoa, AZ 85 ¹Department of Biology, University of Pennyhvania, Philadelphia, PA 19104, and ¹Department of Clinical Studies, School of Veterinary Medicine, Univ ¹Department of Biology, University of Pennyhvania, Philadelphia, PA 19104, and ¹Department of Clinical Studies, School of Veterinary Medicine, Univ ¹Department of Biology, University of Pennyhvania, Philadelphia, PA 19104, and ¹Department of Clinical Studies, School of Veterinary Medicine, Univ

Contributed by Dorothy L. Cheney, June 21, 2017 (sent for review April 3, 2017; reviewed by Sarah Marshall-Pescini and Karen J. Parker)

Contents lists available at ScienceDirect

Applied Animal Behaviour Science

journal homepage: www.elsevier.com/locate/applanim

Research paper

Improving puppy behavior using a new standardized socialization program

Helen Vaterlaws-Whiteside*, Amandine Hartmann

Guide Dogs National Breeding Centre, Banbury Road, Bishops Tachbrook, Warwickshire, CV33 9WF, United Kir

PUBLIC HEALTH

Coddled Puppies Make Poor Guide Dogs, Study Suggests

August 7, 2017 · 3:44 PM ET Heard on All Things Conside

- Link between high performancereactivity?
 - Biological underpinnings of sensitivity to rewards/aversives
- Influence of genetics and behavior
 - Maternal influences and epigenetics
 - Gut/brain/behavior axis

Cognitive parameters of scent detection

- Learning capacity
- Memory duration and capacity
- Limits of detection
 - Threshold, generalization

Thank You

Partners and Collaborators

Breeding program support

IWDB Board for 20 Years of Supporting the Working Dog Community

Creating a U.S. Domestic Supply of Highest Quality Detector Dogs

